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The Electric-Field Problem of an
Interdigital Transducer in a
Multilayered Structure

PETER M. VAN DEN BERG, WALTER J. GHIJSEN,
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Abstract —A computational technique for the determination of the
potential distribution of an interdigital transducer in a layered nonpiezo-
electric environment is presented. Firstly, the problem is reduced to a dual
boundary value problem for the potential distribution and the jump in the
current density in the plane of the interdigital transducer. Secondly, an
iteration scheme to solve this dual boundary value problem is outlined. It is
based upon an iterative minimization of the integrated square error made in
the boundary conditions on the transducer fingers. Finally, numerical
results for some representative configurations are presented.

I. INTRODUCTION

HE ANALYSIS OF surface acoustic wave (SAW)
filters on silicon subtrates is of considerable impor-
tance for the design of these filters in integrated circuits
(Fig. 1). Any analysis method of SAW devices is based
upon the solution of the field equations and pertaining
boundary conditions [1], [2]. This complicated problem is
approximated either by methods using circuit models [3],
[4] or a perturbational method using normal mode expan-
sions [5]. In most cases, only a semi-infinite piezoelectric
substrate has been considered [6], [7]. A review of different
models has been presented by Szabo et al. [8).
In the case of a small piezoelectric coupling; the electric-
field distribution is determined by considering the electric
part of the problem only [9], [10]. In the present paper, we

also consider the electric-field problem only. Our analysis .

has been inspired by Hartmann and Secrest [11]. These
authors have presented a rather simple method to compute
the electric field of an interdigital transducer in a two-media
configuration. However, special measures have to be taken
to avoid serious convergence problems. In. the present
paper, it is shown how to obtain optimum convergence.
The latter is arrived at by minimization of the integrated
square error made in the boundary conditions at the elec-
troded surface. The number of layers is arbitrary. We
assume that the principal axes of the permittivity tensor
and the conductivity tensor coincide and that one of them
is perpendicular to the interfaces of the layers, while the
other is parallel to the fingers of the transducer. Further,
the fingers are thought to be infinitely long (two-dimen-
sional problem). A similar configuration has been investi-
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Fig. 1. A SAW device on a silicon substrate.

gated by Quak and Den Boon [12]. However, our present
spectral iteration scheme is more flexible and leads to
considerably smaller computation times. Finally, some
numerical results for a realistic configuration [13} are pre-
sented to illustrate the power and versatility of the method

and the pertinent computer program.

II. DESCRIPTION OF THE CONFIGURATION AND THE ‘
E1LECTRIC-FIELD PROBLEM

The general configuration to be investigated is shown in
Fig. 2. A number of parallel electrodes with infinite electri-
cal conductivity is situated in a plane interface of the
multilayered structure. A Cartesian coordinate system
(x, y, 2) is introduced such that the electrodes are located -
in the plane z = 0 and parallel to the y-axis. The electroded
part of the plane z =0 is denoted as S, while the unelec-
troded part is denoted as 3’. The part of S occupied by the
pth electrode is called S, and the part of S” adjoining the
left edge of the pth electrode is called S,. The configura-
tion consists of M +1 homogeneous layers at one side of
the electroded plane and N +1 homogeneous layers at the
other side. The interfaces between the layers are the planes
z=z,, m=12,--- Mforz>0and z=2,, n=12,---,N
for z < 0.

The electric properties of a material can be characterized
by its permittivity tensor € and its conductivity tensor o.
We assume that in each layer the principal axis of € and o
coincide with the axes of the Cartesian coordinate system.

Then, in this system, both tensors are represented by the
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Fig. 2. The general configuration.
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Sinusoidally time-varying voltages are applied to the elec-
trodes and these generate a time-harmonic field. The com-
plex time factor exp( jwt) is omitted in the formulas. In the
range of frequencies we are interested in, we may neglect
the influence of the magnetic field, so V X E =0, and
hence the electric field can be written as

E=-vV (2)
where V' is the electric potential. From the (generalized)
current density

J={(o+ jwe)-E

and the equation of continuity
v-J=0 4)
together with (2), we obtain for each of the layers a partial
differential equation to be satisfied by the electric potential

V- [(o+ jwe)-wV]=0. (5)

To determine ¥V in each layer, we must further specify
the boundary conditions at any interface. These conditions
are as follows.

(3)

1) Across any interface, the electric potential V' is
continuous.

2) Across an unelectroded interface, the z-component
J, of the current density is continuous.

3) At the plane z =0, the potential equals the pre-
scribed constant value U, at the pth electrode

V(x,0)=U;,, xXE€S,.

(6)

4) At the unelectroded part of z =0, the jump in the
z-component of the current density

Q)

J " =1limJ.(x, z)—limJ,(x,
[7.(x))] zfgz(x z) lim (x, z)

is equal to zero

[7.(x)]F=0, xes. (8)
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The electric current per unit length in the y-direction fed
into the pth electrode follows from the surface integral of
the z-component of the current density as

+
1= [ [4(x)] dx. )
SP
The electrodes are fed in such a way that the net electric
current in the configuration vanishes. Thus

/;[Jz(x)]:r dx=0. (10)

As a consequence, the potential can be taken equal to zero
as |z| — co. In some applications, we are dealing with a
perfectly conducting ground plane at z=z,, and/or z =
zy. In the latter case, the potential at a ground-plane
interface can also be taken equal to zero.

III.

On account of the invariance of the configuration with
respect to the y-coordinate, the electric-field problem is a
two-dimensional one in x and z. We introduce the spatial
Fourier transform of an arbitrary function F(x, z) as

F(a,z)= fj}oF(x, z)exp(— jax) dx,

SPECTRAL REPRESENTATIONS

a<=ER

(11)
while the original function F(x,:z) is found from the
inverse transform as

F(x,z)= (2%)—1f_wwﬁ(a, 2)exp(jax)dx,  xER.

(12)

Similar Fourier transform pairs are defined for the poten-

tial [V(x, z),V(«, z)] and the current density [J(x, z),

J(a, z)]. With the aid of this Fourier transform, it is
observed that (5) can be written as

-k aW(a,z)+«,3*V(a,z)=0 (13)

where we have used d,=0. In (13), «, and «, are given by

'Cx,m=€x m+ox,m/jw .

Koom ™ s Oy /O } n Dy, (14)
and

Kx,nzex,n+ox,n/jw .

Kz,n =€z,n + 0‘z,n/j"" } n Dn- (15)

For the range of the subscripts we refer to Fig. 2.
1t is now easily verified that the spectral solutions (in the
a-domain) of (13) can be written in the matrix form

V(a,z) V(a,z’)

- =T -z - i

[Jz(a,z)] [Tl Z”[ua,z') n O
(m=1,2,---,M) (16)

where the transfer matrix is given by

[T, (a,2)] = [ — Y, tsinh(y,z)

cosh(y,,z)

cosh(y,,z)
—Y,,sinh(v,z)

} (17)



VAN DAN BERG et al.: INTERDIGITAL TRANSDUCER IN A MULTILAYERED STRUCTURE

in which

V(@) =ik, ,/k, )" (m=1,2,---, M+1) (18)

Ym(a)=jw|a|(lcx’mxz’m)l/2 (m=1,2,---,M+1)
(19)

the square roots being defined as Re( - - - )*/? > 0. Similar

relations in D, are arrived at if, in (16)—(19), m is replaced
by n and M is replaced by N.

The boundary conditions at the unelectroded interfaces
are simply the relations’ »

. -V(a,z)- i _I;'(a,z)-

lim | - = lim | . ,

z1z, LJz(a,z)_ z.],szJz(a,Z)_
(m=1,2,--~,M) (20)

o . g .

tim | %) |2 g | V202)

21z, |J(a,2) | z1z|J(a,2) ]
(n=1,2,---,N). (21)

In the semi-infinite domain D, ,, we have solutions of
(13) of the type exp(— vu.12z); hence, at the interface
z = z,,, we have the relation

jz("fa 23) = VgV (@, 241)- (22a)
If the plane z = z,, is grounded, then, simply
V(a, zy)=0. (22b)

In the semi-infinite domain D, ,, we have solutions of
(13) of the type exp(yy,12); hence, at the interface z = zy,
we have the relation

J(a Zy)=— N+1V(a zy)- (23a)
If the plane z = z, is grounded, then, simply
V(a,zy)=0. (23b)

Now, using the transfer-matrix formulation of (17) and
(20), the spectral representation of the potential V(a,0%)=
lim, LoV (e, z) and the current density J(a,0%)=1lim, 4
J (a, z) can be expressed in the pertaining values at z=1z,,
as

[f/(a,OJ“) 7(a, ZM):I (24)

J(a o+>} sl 5 0 200

where the elements of the transfer matrix [T1—>M] follow
from

T,
&Y,
Similarly, the spectral representation of the potential
7(a,07)=1lim, TOV(oz, z) and the current density J,(a,07)

= lim, TOJ (@, z) can be expressed in the pertaining values
at z=12z, as

[P0 o]

7452

M
TZ;} = }—:[1 [T, (21— 2,)]. (25)

(26)

J,(a,07) J(a, zy)
where
T(1,1) Tl(l 2]2,} N
- 1—.[ [Tn(a’zn—l_zn)]' (27)
{sz_}}, 7@ | a-i
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Combining (22) and (24), we arrive at

J(a,07)=Y"(a)V(a,0") (28)

where
T%0, + Yy, T3
Y+ (a) = (l‘)l];l M+1 1(;’21;4 (293)
T2+ Yo iy
or, if the plane z = z,, is grounded
Y* (@) = T3 T3, (29b)

It is noted that, in case we are dealing with only a
semi-infinite medium present for z > 0, we have Y (a) =
Y, (a), where m =1. Similarly, the combination of (23) and
(26) leads to

J(a07)=-Y (a) 7(e,07) (30)

where
TEY — Yy, T3
Y'(a)=— 1(1 11;/ N+1 1(1—>21)V (30a)
T3 — Yva sy
or, if the plane z = z,; is grounded
Y~ (a) =TE3/TER, (30b)

It is noted that, in case we are dealing with only a
semi-infinite media present for z <0, we have Y™ (a)=
Y, (a), where n=1.

Finally, the spectral relation between the potential

V(a,0)=V(a,0")=¥(a,07) and the jump in the z-com-
ponent of the current density [J(e)]t = J(a,0")—
J(a,07) is obtained by combining (28) and (30). We
arriile at

[7.(a)] 2 =Y(a)(e,0) (31)

with
Y(a)=Y*(a)+Y (a). (32)

The only conditions yet to be fullfilled are (6)—(10). Thus,
the electric-field problem as described in Section II has
been reduced to a dual boundary value problem for the
potential in z =0 and the jump in the z-component of the
current density in z =0, where (31) is an interconnecting
relation between these quantities. Once this one-dimen-
sional problem for z = 0 has been solved, the potential can
be determined in whole space R2 The latter directly fol-
lows from (28) and (30) and the transfer-matrix technique
of (16)—(21). Finally, the electric field is obtained from (2).

IV. ITERATIVE MINIMIZATION OF THE INTEGRATED

SQUARE ERROR

This section outlines the iterative method used to find a
solution to the problem described by the spectral relation
of (31) and the dual boundary value problem of (6) and
(8). Further, (10) should be satisfied as well.

A. Initial Estimate

The method starts with an initial estimate for which the
current density satisfies all conditions. A simple choice is
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the constant value

V(O)(x,0)=fUde’/fdx’, xeR (33
S S

being the integrated average value over all electrodes. The
related jump in the current density [J,(x)]F is identical
equal to zero and satisfies (8) and (10) trivially.

B. Iterative Procedure

In order to fulfill (6), we have an iterative procedure
where the nth estimate of the potential V'(x,0) is gener-
ated from the former step of the iteration as

VO (x,0) =V "D(x,0)+ 1Mo (x),  xeR(34)

where 1™ is a complex variational parameter and v("(x)
is a suitably chosen variational potential. The current
density [J (x)]7 related to this variational potential v (x)
through (31) should satisfy (8) and (10). Notice that the
current density related to V(" then satisfies (8) and (10).
The actual construction of v((x) will be discussed in
Section V. The deviation of the estimated potential V" (x)
from the required value U, at the pth electrode is denoted
by F(")(x) as

F(x)=U,~V™(x,0), x€8,

(35)

while the integrated square error ERR(™ after n steps is
given by

ERR®™ = [|F™(x)| dx. (36)
s
The expression for ERR(™ can now be written as

ERR™ = ERR™=D _2Re [T](")*A(n)] + ln(n) IZB(n)
(37)
in which
A(")=fu(")*(x)F("_1)(X) dx (38)
S
and

(39)

The right-hand side of (37) has, as a function of 7(, a
minimum at

B(”)=f|v(")(x) lzdx.
s

7 = A‘")/B(”). (40)
Taking 7™ to be this value in (37), we obtain
ERR™ = ERR"Y — |4} B™ (41)

from which it follows that, if 4™ # 0, ERR(™ < ERR* D,
In this-way, a possible divergence of the iteration scheme
has been excluded.

A necessary but not sufficient condition that ERR™ = (
for some n is

fSF<">(x) dx = 0. (42)

For n =0, our choice of the initial estimate of (33) satisfies
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this condition already. Therefore, we employ

f o™ (x) dx =0 (43)
s

as an extra condition for the selection of the variational
potential (cf., Section V).

C. Second Minimization Step

In order to decrease the right-hand side of (37) still
further by manipulating the variational potential v, we
substitute (40) in (34) and use the expressions for A and
B Then, it follows that

fv(q)*(x)F(q)(x) dx=0, ¢=1,2,---,n. (44)

s

With this orthogonality relation, we are now able to mini-
mize B, while keeping A unchanged if, in the right-
hand side of (39), the function v(")(x) is replaced by
M (x)—¢p"=D(x), where { is a second variational
parameter. If this replacement is carried out in (39), a new
value B™ of B is constructed, that follows as

B™ = B™W _2Re[¢M*C™] +|¢™|"BOD  (45)
where
(46)

The right-hand side of (45) has as a function of { a
minimum at

ct= /v("‘l)*(x)v(”)(x) dx.
s

¢ = C(n)/B("—l). (47)

Taking, in (45), { to be this value, we arrive at

B™=B™_|c|* /gD, (48)

First of all, this shows that B < B™ if C #0. Fur-
ther, it follows by substituting (47) in

0 (x)=v"(x)—¢Mo"D(x), xeR (49)

that
(50)

If the original function v("(x) was already such that the
right-hand side of (46) vanished, then no improvement will
be attained in this second minimization step. Note that this
is consistent with (50). Hence, the second minimization
step automatically stops after being carried out once. In
the next section, we shall discuss a procedure that leads, in
each iteration, to the generation of a particular value of
v{™(x). Once {™ has been determined, v(x) can be
replaced by 5(”(x) of (49). Note that the second minimiza-
tion step can only be carried out from » = 2 onward, since
0@ is not defined. The complete iteration scheme is shown
in Table I.

/v(”'l)*(x)l_)(")(x) dx =0.
s

V. (GENERATION OF THE VARIATIONAL POTENTIALS

This section presents the technique to construct the
variational potential v(x) such that in the a-domain we
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TABLEI .
THE ITERATION SCHEME

V0.0 = [g 0, do' / fg &'
70 PO - v, - 710 (z,0

rr(®) < 70 0)|? e
\

¥

determination of v(”)(x)
(Section V)

/

B R S L P ™

5 = folo™ )2 g

l

™ < g o @) oM () d

if n>l

L00) ) ) 1)

A1) ) (m) )

NONO e
7 2,0y = 7D (2,0) + 0 () () ey
M) = o, - (") (2, 0)

Rl < [ 7 (2)|?

have a spectral relation equivalent to (31) as

J (@) =Y(a)5™(a)
where, in the x-domain

(51)

M (x)=0, xe€§ (52)
[i(x) dx=0 (53)
s
/ v™(x) dx = 0. (54)
s
A suitable choice of v\ would be
xXES

()= | FO P (x),
v (x) {O, es (55)
Clearly, the choice of v™(x) at S provides an error
ERR™ = (0, but (51)-(54) have not necessarily been met.
Table II shows how a variational potential with an associ-
ated j(™ satisfying all requirements can be generated by
using the value v{™ of (55) as a starting point. In step (a)
of Table II, the current-density jump that is related to the
potential of (55) is determined. Subsequently, in step (b),
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TABLE I1
GENERATION OF v{"(x), x €R

aw-domain a-domain
(xeR) (ceR)
(a) F(n_l)(x) , xeS

0 ,xeS'} ﬁ ?S(a)

3, (=)

l

. (n) L 0, xeS'
(b) Jyw) e s Oy o
jz(n)(x) i —éL—E—————T—————', ze$
l -
(c) jz(ﬂ)(x) =) 32(")(04)
b
o) = M - 3, (0)/7(a) a e R\L0}
j 0, a=0
(n)
+ d ¥
(d) W) gy 1m o)y - S8 7 ) &
IS de'

the current-density jump is forced to satisfy (52) and (53)
by simply setting the value of this function at the unelec-
troded part S’ as well as the average value at the elec-
troded part S at zero. In step (c), the potential results such
that the average value of this potential over R is zero. In
the last step (d), o' is constructed such that this function
satisfies (54). Note that this last modification of v™ does
not modify the related j. In the spectral relation of (51),
only #(0) would change; however, this has no influence
upon ;M (0), since we know that ¥(0) = 0.

V1. COMPUTATIONAL ASPECTS AND NUMERICAL
s

RESULTS

In our computational approach, we represent all spatial
functions occurring in the iteration scheme as functions of
certain discrete values of x, while in the Fourier domain,
all spectral functions are represented as functions of cer-
tain discrete values of a. The Fourier transform and the
inverse Fourier transform in discrete form between the
spatial and the spectral functions are performed by the
very efficient fast Fourier transform (FFT) technique [14].
In order to implement the FFT technique, we have to
recognize that, in fact, the FFT can only be applied to
periodic functions. This implies that only the electric-field
problem of an infinite periodic interdigital transducer can
be solved. It is obvious that a finite interdigital transducer
having a large number of periodically located electrodes is
very similar to an infinite periodic one. If this assumption
is not valid, then the interdigital transducer can be simu-
lated as an infinite periodic one of which the period
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hg, 0,° O.5um
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Fig. 3. An interdigital metal pattern in a vacuum ZnO-SiO, —Si config -

uration.

consists of the interdigital transducer involved supple-
mented with a large unelectroded surface. In this way, the
mutual influence of two adjacent periods is reduced. Fur-
ther in our computational approach, all integrations over S
in the iteration scheme are replaced by a simple numerical
summation (trapezoidal integration rule).

In order to demonstrate the performance of the pre-
sented method, we apply it to a specific configuration (Fig.
3). It consists of an infinite periodic interdigital metal
pattern in a vacuum ZnO-SiO, -Si structure. The polari-
ties of the fingers are alternately +1 V and —1 V. All
electroded domains (=W) and all unelectroded domains
are equally sized. The period (= P) of the interdigital
transducer, being the distance between the left edges of two
adjacent positive electrodes, is taken 40 um. Table III lists
the relative permittivities and the conductivities of the
media of the configuration in Fig. 3. In Table IV, we
present the values of the root-mean-square error
[ERR™ /[.dx]*/? as a function of the number of itera-
tions. The remarkable convergence of the present iterative
method has to be noted.

In Fig. 4, we present the numerical results for the spatial
distribution of the potential and the surface charge p, =
(jw) YJ,(x)]* at the electroded plane of the configura-
tion of Fig. 3. The frequencies of operation are taken to be
w =10° rad /s (curve a) and w =10'" rad/s (curves b and
¢). The surface charge in the low-frequency situation is
larger than in the high-frequency one. Furthermore, the
surface charge as well as the potential at the electroded
plane are approximately real in the low-frequency case,
and become complex when the frequency is increased. The
isopotential plots of Fig. 5 also visualize the difference
between the high- and the low-frequency behavior. For
«w =10° rad/s, it is observed that the isopotential lines do
not penetrate into the silicon bulk. Replacing the silicon
medium by a highly conductive plate, we have observed no
difference in the isopotential plots of the two configura-
tions for this low-frequency region. For w =10'° rad /s, the
isopotential lines penetrate into the silicon. The discontinu-
ities in the curves at the interfaces are due to continuity
constraints of the potential and the normal component of

the current density. In Fig. 6, the frequency behavior of the
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TABLE III
THE VALUES OF THE RELATIVE PERMITTIVITIES (€, = € /€,;
€o = 8.854 10~ >F /m) AND CONDUCTIVITIES OF THE MEDIA OF
THE CONFIGURATION OF F16G. 3

medium € C2r e o,
in S/m in S/m
Vacuum 1 1 0 0
Zn0 8.32 8.83 0 0
S1'02 3.78 3.78 0 0
Si 11.7 11.7 1.0 1.0
TABLE IV

THE ROOT-MEAN-SQUARE ERROR AS A FUNCTION OF THE NUMBER
OF ITERATIONS

Tteration The root mean square error
step w = 106 w = 1010
1 13 % 12 %

2 0.074 % 0.15 %
3 0.021 % 0.10 %
4 0.0017 % 0.01 %
5 0.0004 % 0.005 %

The configuration of Fig:3 has a discretization of 256 points within the
period P.

Vin
vott| 104
051

00+

b w=10"",REAL PART
¢ w=10",IMAGINARY PART

33
Psini0 ~
Coul/m 04
024 xmum
00 “Ib 30 ¢ 40
o ¢ 20 Fﬂb
-024
-04,'

Fig. 4. The spatial distribution of the potential and surface charge at the
electroded plane of the configuration of Fig. 3.

configuration is further visualized by the capacitance and
the conductance of a finger pair as a function of the
frequency. It is observed that the conductance G ( = the
quotient of the real part of the current through one elec-
trode and the pertaining potential difference of the finger
pair) is practically zero for low frequencies, while the
capacitance C (= the quotient of the real part of the
surface charge at one electrode and the pertaining potential
difference of the finger pair) has a constant value. At high
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Fig. 5. The potential distribution in the configuration of Fig. 3 for
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Fig. 6. The capacitance and conductance of a finger pair as function of
the frequency.
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Fig. 7. The potential distribution in the configuration of Fig. 3, while
the metal pattern consists of six electrodes only (w = 109).
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Fig. 8. The potential distribution in the configuration of Fig. 3, while
the thickness of the SiO, layer is infinite (hg0, — 00) and the metal
pattern consists of six electrodes only.

frequencies, the capacitance has a smaller constant value,
and the conductance is not negligible anymore. In Fig. 7,
we present the isopotential lines of a finite interdigital
metal pattern of six electrodes in the vacuum ZnO-SiO, -Si
structure of Fig. 3. To simulate the infinite domain in
which the six electrodes have been situated, we take a
period (in the FFT calculations) of fifty times the width of
one electrode. Fig. 7 demonstrates that the influence of end
effects in this configuration are negligible. In Fig. 8, we
show an isopotential plot for the metal pattern of six
electrodes in the configuration of Fig. 3, while the thick-
ness of the SiO, layer is thought to be infinite (hgq, = 00).

. Here, the end effects play a dominant role. Obviously, the

conductivity of the silicon substrate in Fig. 7 has reduced
the influence of end effects.

In order to discuss the influence of the discretization
upon our numerical results, we therefore compare our
numerical results to known analytical ones in a simple
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TABLE V
THE RELATIVE ERROR AND THE COMPUTATION TIME (ON AN
AMDAHL V/7-B COMPUTER) RESULTING FROM THE
COMPUTATION OF THE CAPACITANCE OF A PERIODIC INTERDIGITAL
TRANSDUCER IN VACUUM

Number of Relative error Computation time
points
32 3% <1ls
64 1.6 % <1ls
128 0.7 % ls
256 0.3 % ls
512 0.1% 4 s
1024 0.02 % 7s
Cin

F/m
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Fig. 9. The capacitance of a finger pair in the configuration of Fig. 3 as
a function of the electrode width (W), while the period P is constant.

configuration of an infinite periodic metal pattern in
vacuum. The capacitance is then given by [9]

C=2¢,K(k)/K((1-k2)"?) (56)

where K is the complete elliptic integral of the first kind
[15], and & = cos(1/27(1—2W/P)). Table V presents the
relative error as a function of the number N of discretiza-
tion points within a period P, where the summed square
error of the discretized iteration scheme is negligible.
Finally, the capacitance pertaining to the configuration
of Fig. 3 as a function of W is presented in Fig. 9.

Additionally, we also present the capacitance if the thick-
ness of the SiO, layer is thought to be infinite.

VIL

We have presented a computational method to investi-
gate the behavior of a SAW transducer. The method is
based upon a fast convergent iterative scheme. The minimi-
zation of the error made in the satisfaction of the boundary
condition at the electrodes has guaranteed the convergence
of the scheme. Using the FFT technique, the numerical
computations are straightforward. At this moment, we are
now able to compute the electric field of any realistic finger
structure in any realistic layered environment.

We have further shown that the influence of the layers is
necessary to take into account. A conducting layer can
influence the mutual coupling of the transducer fingers
dramatically.

CONCLUSIONS
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Computer Calculation of Large-Signal
GaAs FET Amplifier Characteristics

ANDRZEJ MATERKA AND TOMASZ KACPRZAK

Abstract — A simple and efficient method of GaAs FET amplifier analy--

sis is presented. The FET is represented by its circuit-type nonlinear
dynamic model taking into account the device’s main nonlinear effects
including gate—drain voltage breakdown. An identification procedure for
extraction of the model parameters is described in detail and examples are
given. The calculation of the amplifier response to a single-input harmonic
signal is performed using the piecewise harmonic balance technique. As
this technique is rather time-consuming in its original form, the optimiza-
tion routine used to solve the network equations was replaced by the
Newton—Raphson algorithm. Characteristics calculated with the use of the
proposed method are compared with experimental data taken for a micro-
wave amplifier using a 25K273 GaAs FET unit. Good agreement at 9.5
GHz over wide ranges of bias voltage and input power levels are observed.

I. INTRODUCTION

HE GaAs FET is receiving' continuously growing at-

tention from circuit designers both in low-noise and
high-power applications. Particularly, the power FET is an
attractive device for use in microwave amplifiers and oscil-
lators with its efficiency and power performance compara-
ble or even superior to the other commercial solid-state or
" TWT sources. On the other hand, the power FET has
received much less attention from researchers than its
low-noise counterpart and, still, there is a need for data on
device RF characterization at large-signal drive levels.

Manuscript received November 10, 1983; revised September 17, 1984.
The authors are with the Technical University of Lodz, Institute of
Electronics, Gdanska Street 176, 90-924 L.6d%, Poland.

Some efforts have been made to simulate the large-signal
GaAs MESFET performance based on the numerical solu-
tion of the two-dimensional nonlinear differential equa-
tions describing the electron transport in the channel. The
numerical results [1] are very helpful to understand device
operation, but long computational time makes 'this ap-

. proach impractical in circuit analysis and design programs.

Recently, Madjar and Rosenbaum [2], [3] and Shur and
Eastman [4] developed approximate analytical theories to
model the active region under the gate of the microwave
GaAs FET. Although one of these theories has been ap-
plied to the analysis of a practical microwave FET oscilla-
tor [3], both of them are of limited use in circuit design
practice because they utilize the FET physical parameters
which are scarcely available to the circuit designers.
Willing, Rauscher, and de Santis [5] characterized an actual
device with a quasi-static approach by measuring small-sig-
nal scattering parameters at a number of operating points
to formulate an equivalent circuit, some of whose elements
are bias-dependent. They use polynomial forms to ap-
proximate these dependences and a time-domain analysis
program to calculate the large-signal device characteristics.
The results obtained compare favorably with the experi-
mentally determined characteristics, but the complexity of
the equivalent circuit makes the identification technique of
the model parameters rather laborious. Later, Rauscher [6]

0018-9480 /85 /0002-0129$01.00 ©1985 1EEE



