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Abstract —A computational tecfudque for the determinatiou of the

potentiat distribution of an interdigitaf transducer in a layered nonpiezo-

electric environment is presented. Firstly, the problem is reduced to a dual

boundary vafue problem for the potentiat distribution and the jump in the

current density in the plaoe of the interrfigitaf transducer. Secondly, an

iteration scheme to solve this duaf boundary value problem is outlined. It is

based npon an iterative minimization of the integrated square error made in

the boundary conditions on the transducer fingers. Finally, numerical

results for some representative configurations are presented.

I. INTRODUCTION

T HE ANALYSIS OF surface acoustic wave (SAW)

filters on silicon subtrates is of considerable impor-

tance for the design of these filters in integrated circuits

(Fig. 1). Any analysis method of SAW devices is based

upon the solution of the field equations and pertaining

boundary conditions [1], [2]. This complicated problem is

approximated either by methods using circuit models [3],

[4] or a perturbational method using normal mode expan-

sions [5]. In most cases, only a semi-infinite piezoelectric

substrate has been considered [6], [7]. A review of different

models has been presented by Szabo et al. [8].

In the case of a small piezoelectric coupling, the electric-

field distribution is determined by considering the electric

part of the problem only [9], [10]. In the present paper, we

also consider the electric-field problem only. Our analysis

has been inspired by Hartmann and Secrest [11]. These

authors have presented a rather simple method to compute

the electric field of an interdigital transducer in a two-media

configuration. However, special measures have to be taken

to avoid serious convergence problems. In the present

paper, it is shown how to obtain optimum convergence.

The latter is arrived at by minimization of the integrated

square error made in the boundary conditions at the elec-

troded surface. The number of layers is arbitrary. We

assume that the principal axes of the perrnittivity tensor

and the conductivity tensor coincide and that one of them

is perpendicular to the interfaces of the layers, while the

other is parallel to the fingers of the transducer. Further,

the fingers are thought to be infinitely long (two-dimen-
sional problem). A similar configuration has been investi-
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Fig. 1. A SAW device on a silicon substrate.

gated by Quak and Den Iloon [12]. However, our present

spectral iteration scheme is more flexible and leads to

considerably smaller computation times. Finally, some

numerical results for a realistic configuration [13] are pre-

sented to illustrate the power and versatility of the method

and the pertinent computer program.

II. DESCRIPTION OF THE CONFIGURATION AND THE

ELECTRIC-FIELD PROBLEM

The general configuration to be investigated is shown in

Fig. 2. A number of parallel electrodes with infinite electri-

cal conductivity is situated in a plane interface of the

multilayered structure. A Cartesian coordinate system

(x, y, z) is introduced such that the electrodes are located

in the plane z = O and parallel to the y-axis. The electrode

part of the plane z = O is denoted as S, while the unelec-

troded part is denoted as S’. The part of S occupied by the

pth electrode is called SP and the part of S’ adjoining the

left edge of the pth electrode is called S;. The configura-

tion consists of M + 1 homogeneous layers at one side of

the electrode plane and N + 1 homogeneous layers at the

other side. The interfaces between the layers are the planes

z = Zm, m=l,2,. ... ii4forz >Oandz= z., n=l,2,. ... N

for z <0.
The electric properties of a material can be characterized

by its permittivity tensor c and its conductivity tensor u.

We assume that in each layer the principal axis of c and u

coincide with the axes of the Cartesian coordinate system.

Then, in this system, both tensors are represented by the
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Fig. 2. The general configuration.

diagonal matrices

[

6X00
~= o ‘Y o

0 0 c, [

ox o

fJ= o Uy

00

2.2
M

Z=o

2,2 N

o

)

o.
0=

(1)

Sinusoidally time-varying voltages are applied to the elec-

trodes and these generate a time-harmonic field. The com-

plex time factor exp(jat) is omitted in the formulas. In the

range of frequencies we are interested in, we may neglect

the influence of the magnetic field, so v X E = O, and

hence the electric field can be written as

E=–v V (2)

where V is the electric potential. From the (generalized)

current density

J=(u+j(rM).E

and the equation of continuity

v.J=O

together with (2), we obtain for each of

(3)

(4)

the layers a partial

differential equation to be satisfied by the electric po~ential

V“[(a+jw)”vv]=o. (5)

To determine V in each layer, we must further specify

the boundary conditions at any interface. These conditions

are as follows.

1) Across any interface, the electric potential V is

continuous.

2) Across an unelectroded interface, the z-component

J, of the current density is continuous.

3) At the plane z = O, the potential equals the pre-

scribed constant value Up at the pth electrode

lqx, o)=up, XGSP. (6)

4) At the unelectroded part of z = O, the jump in the

z-component of the current density

[J=(X)]: = limJz(x, z)-limJz(x, z) (7)
z Jo z to

is equal to zero

[Jz(x)]~=O, x= S’. (8)

The electric current per unit length in the y-direction fed

into the p th electrode follows from the surface integral of

the z-component of the current density as

Ip=j [JZ(X)]T dx.
Sp

(9)

The electrodes are fed in such a way that the net electric

current in the configuration vanishes. Thus

~[Jz(x)]~dx=O. (lo)
s

As a consequence, the potential can be taken equal to zero

as Iz I ~ co. In some applications, we are dealing with a

perfectly conducting ground plane at z = z~ and/or z =

z~. In the latter case, the potential at a ground-plane

interface can also be taken equal to zero.

III. SPECTRAL REPRESENTATIONS

On account of the invariance of the configuration with

respect to the y-coordinate, the electric-field problem is a

two-dimensional one in x and z. We introduce the spatial

Fourier transform of an arbitrary function F(x, z ) a;

&(a, z) =f~ F’(x, z)exp(-jax)dx, a=ilt!
—w

(11)

while the original function F(x, z) is found from the

inverse transform as

F(x, z)= (2n)-1~~ ~(a, z)exp(jax)dx, xGIR.
—w

(12)

Similar Fourier transform pairs are defined for the poten-

t~al [V(x, z), ~(a, z)] and the current density [ J(x, z),

J(a, z)]. With the aid of this Fourier transform, it is

observed that (5) can be written as

‘Kxa2ti((X, Z)+ Kzd:~(LI, Z) =() (13)

where we have used dy = O. In (13), ~X and K= are given by

K x,m , + %,m/.@ .=Cxm

K
}

, + u,,~/ju ‘n ‘rn=Czm
(14)

Z,m

and

K X,n , + uX,~/jO=Exn

}
in D..

K cz,n= z,n + o=,m/ju
(15)

For the range of the subscripts we refer to Fig. 2.

It is now easily verified that the spectral solutions (in the

a-domain) of (13) can be written in the matrix form

[1 [1!’(a’ ‘) = [T~(a, z - z’)] ~[~~~~ in D~
J=(a, z) z

(m=l,2,..., M) (16)

where the transfer matrix is given by



VAN DAN BERG d d.: INTERDIGITAL TRANSDUCER IN A MULTILAYERED STRUCTURE 123

in which

Ym(~) = 14(~x, m/Kz, m

y2
(nz=l,2,..., M+l) (18)

Yin(a) = japx](lc 4%J1’2 (~=l>z”””>~+l)
(19)

the square roots being defined as Re(”. “ )1/2> O. Similar

relations in D. are arrived at if, in (16)–(19), m is replaced

by n and M is replaced by N.

The boundary conditions at the unelectroded interfaces

are simply the relations’

(V Z=1,2,..., M) (20)

(n=l,2,..., iv ). (21)

In the semi-infinite domain DM+ ~, we have solutions of

(13) of the type exp ( – YM+ ~Z); hence, at the interface

z = ZM, we have the relation

~z(a, z~) = y~+i~(a, ‘M). (22a)

If the plane z = ZM is grounded, then, simply

V(a, ZM) =0. (22b)

In the semi-infinite domain DN+l, we have solutions of

(13) of the type exp (y~+ ~z); hence, at the interface z = z~,
we have the relation

~z(a, ZN) ‘= – YN+lv(a, ZN). (23a)

If the plane z = z~ is grounded, then, ShPIY

P(a, zN) = o. (23b)

Now, using the transfer-matrix formulation of (17) and

(20), the spectral representation of the potential ~(a,O+ ) -

lim= ~~~(a, z) and the current density ~Z(a, O+ ) = lim. ~O

~z(a, z) can be expressed in the pertaining values at z = ZM

as

where the elements of the transfer matrix [Tl - J follow

from

Similarly, the spectral representation of the potential

fi(a,o - ) = limz ~o~(a, z) and the current density ~Ja,O- )

= lim , ~O.j,(a, Z) can be expressed in the pertaining values
atz=z~as

where

[:; %!l=fil[Tn(azn-l-zn)]’27)

Combining (22) and (24), we arrive at

~z(a,o+) =Y+(a)lqa,o+) (28)

where

or, if the plane z = ZM is grounded

It is noted that, in case we are dealing with only a

semi-infinite medium present for z >0, we have Y+(a)=

Y~(a), where m = 1. Similarly, the combination of (23) and

(26) leads to

~z(a,o-)= - Y-(a) V(fx,o-) (30)

where

or, if the plane z = z~ is grounded

It is noted that, in case we are dealing with only a

semi-infinite media present for z <O, we have Y-(a)=

Y.(a), where n =1.

Finally, the spectral relation between the potential

~(a, O) = ~(a, 0+ ) = ~(a, 0- ) and the jump in the z-com-

ponent of the current density [~Z(a)]~ = ~Z(a, 0+ ) –

J=(CG0- ) is obtained by combining (28) and (30). We

arrive at

[~z(a)]:=Y(a)P( a,o) (31)

with

Y(a)= Y’(a) +Y-(fx). (32)

The only conditions yet to be fulfilled are (6)-(10). Thus,

the electric-field problem as described in Section II has

been reduced to a dual boundary value problem for the

potential in z = O and the jump in the z-component of the

current density in z = O, where (31) is an interconnecting

relation between these quantities. Once this one-dimen-

sional problem for z = O has been solved, the potential can

be determined in whole space R 2. The latter directly fol-

lows from (28) and (30) and the transfer-matrix technique

of (16)–(21). Finally, the electric field is obtained from (2).

IV. ITERATIVE MINIMIZATION OF THE INTEGRATED
SQUARE ERROR

This section outlines the iterative method used to find a

solution to the problem described by the spectral relation

of (31) and the dual boundary value problem of (6) and

(8). Further, (10) should be satisfied as well.

A. Initial Estimate

The method starts with an initial estimate for which the

current density satisfies all conditions. A simple choice is
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the constant value this condition already. Therefore, we employ

/1 (33) L()Jn) ~ dx = oV(0)(x, O) = @ dx’ ~dx’, XGR (43)

being the integrated average value over all electrodes. The as an extra condition for the selection of the variational

related jump in the current density [J,(x)] ~ is identical Potential (cf., Section V).

equal to zero and satisfies (8) and (10) trivially.
C. Second Minimization Step

B. Iterative Procedure In order to decrease the right-hand side of (37) still

In order to fulfill (6), we have an iterative procedure further by manipulating the variational potential U(”), we

where the n th estimate of the potential V(”)(x, O) is gener- substitute (40) in (34) and use the expressions for A(”) and

ated from the former step of the iteration as B (~). Then, it follows that

V(”)(x, o)=v(”-l)(x, o)+q(”)u(”)(x), x = R (34)

where q(”) is a complex variational parameter and u(n)(x)

is a suitably chosen variational potential. The current

density [.lz(x)]~ related to this variational potential v(”)(x)

through (31) should satisfy (8) and (10). Notice that the

current density related to V(’) then satisfies (8) and (10).

The actual construction of v(”)(x) will be discussed in

Section V. The deviation of the estimated potential V(’)(x)

from the required value UP at the pth electrode is denoted

by ~(”)(x) as

~u(q)*(~)@’)(x) d~=& ~=1,2, ~-n- (44)
s

With this orthogonality relation, we are now able to mini-

mize B(n), while keeping A ‘“) unchanged if, in the right-

hand side of (39), the function U(n)(x) is replaced by
J’)(x)- ~(”)u(”–l)(x), where {f”) is a second variational

parameter. If this replacement is carried out in (39), a new

value ~(~) of B(~) is constructed, that follows as

jj(~) = B(n) _2Re [{(~)y(n)] + l{@)12B@l) (45)

(35) whereF(”)(x) = up – V(n)(x, o), XESP

while the integrated square error ERR(”) after n steps is @)=fi(n-’)*(~)v( n)(x)dx (46)
given by

ERR(n)=/jF@)(x) 12dx.

The right-hand side of (45) has as a function of {(”) a

(36) minimum at
~

The expression for ERR~n~ can now be written as /
{(~)= c(~) B(~-l) (47)

Taking, in (45), {(”) to be this value, we arrive at
ERR(”) = ERR(”-l) –2Re[q(”)*A(”)] + lq(”~ 12B(”)

(37)
jj(~)= B(~)_ lC(~)12/@-1). (48)

in which First of all, this shows that ~(n)< B(”), if C(”) # O. FuT-

ther, it follows by substituting (47) in

~(n)= &(n)*(x) @n-’)(x)dx (38)
x G R (49)o(”)(x) = V(”)(x)–{(”)u(’-l)(x),

and that

B@)=~lz$n)(x)12dx. (39) ~~(”-’)’(x)fi(n) (x) dx=o. (50)
s

The right-hand side of (37) has, as a function of q(”), a

minimum at

‘o /
(~) = ~(~) B(n). (40)

Taking q(”) to be this value in (37), we obtain

ERR(n) = ERR(-~) _ A(n)[ 12/B(n) (41)

from which it follows that, if A(”) #O, ERR(”)< ERR~n l).
In this way, a possible divergence of the iteration scheme

has been excluded.

A necessary but not sufficient condition that ERR~”) = O
for some n is

p(”wdx=o. (42)

For n = O, our choice of the initial estimate of (33) satisfies

If the original function v(”)(x) was already such that the

right-hand side of (46) vanished, then no improvement will

be attained in this second minimization step. Note that this
is consistent with (50). Hence, the second minimization

step automatically stops after being carried out once. In

the next section, we shall discuss a procedure that leads, in

each iteration, to the generation of a particular value of
u(”)(x). Once {(n) has been determined, v(”)(x) can be

replaced by ti(~)(x ) of (49). Note that the second minimiza-

tion step can only be carried out from n = 2 onward, since
v(o) is not defined. The complete iteration scheme is shown

in Table I.

V. GENERATION OF THE VARIATIONAL POTENTIALS

This section presents the technique to construct the

variational potential U(n)(x) such that in the a-domain we



VAN DAN BERG et a!.: INTERDIGITAL TRANSDUCER IN A MULTILAYERED STRUCTURE 125

TABLE I
THEITERATION SCHEME

El

+o)(z,o) = Js ~u dz’ / fS d.z’

F(o)(x) = Up - V(0)(a,O)

ERR(0) = ~+(o)(z)lz dz

i

determi nation of v (n)(c)

(Section V)

i
~(~) . J~ O(‘)’(x) F(n-l)(m)dz

rif n>l Jn) . j~ V( ‘-l)*(x) o(n)(x) dx

c (~) = ~(~) , J~-1)

~(n) ._ ~(n) . ~(n) &n)*.-

Jn)(x,o) = v (~-l)(z,o) + n (~) ~(~)(z)

F(n)(z) = Up- V(n)(z,O)

ERR(n) = jSIF(n)(.Z)12 dx

have a spectral relation equivalent to (31) as

j’”)(a) = Y(a) #”)(a) (51)

where, in the x-domain

J“)(x)=o, XES’ (52)

L()“(~) x & =()J. (53)

L()V(n) X dx = O. (54)

A suitable choice of u(”) would be

{
F(”-’)(x)> XES~(n)(x) = (55)
o, XE S’”

Clearly, the choice of u(”)(x) at S provides an error
ERR(”) = O, but (51)–(54) have not necessarily been met.

Table II shows how a variational potential with an associ-

ated j:”) satisfying all requirements can be generated by

using the value U(”) of (55) as a starting point. In step (a)

of Table II, the current-density jump that is related to the

potential of (55) is determined. Subsequently, in step (b),

TABLE II

GENERATION OF d“)(x), x G K!

.w-dornai n wdomai n

(OCR) (cl<R)

(a) F(n-l)(LZ) , ad

o
!

, ~es, =+ ~s(”)

I

I
+

(b)

I
.—

the current-density jump is forced to satisfy (52) and (53)

by simply setting the value of this function at the unelec-

troded part S’ as well as the average value at the elec-

trode part S at zero. In step (c), the potential results such

that the average value of this potential over R is zero. In

the last step (d), U(n) is constructed such that this function

satisfies (54). Note that this last modification of o(”) does

not modify the related j~n). In the spectral relation of (51),

only U(“)(0) would change; however, this has no influence

upon ~~n)(0), since we know that Y(0)= O.

VI. COMPUTATIONAL ASPECTS AND NUMERICAL

RESULTS

In our computational approach, we represent all spatial

functions occurring in the iteration scheme as functions of

certain discrete values of x, while in the -Fourier domain,

all spectral functions are represented as functions of cer-

tain discrete values of a. The Fourier transform and the

inverse Fourier transform in discrete form between the

spatial and the spectral functions are performed by the

very efficient fast Fourier transform (FFT) teehnique [14].

In order to implement tlhe FFT technique, we have to

recognize that, in fact, the FFT can only be applied to

periodic functions. This implies that only the electric-field
problem of an infinite periodic interdigital transducer can

be solved. It is obvious that a finite interdigital transducer

having a large number of periodically located electrodes is

very similar to an infinite periodic one. If this assumption

is not valid, then the interdigital transducer can be simu-

lated as an infinite periodic one of which the period
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Fig. 3. An interdigital metaf pattern in a vacuum ZnO-Si02 -Si config -
uration.

consists of the interdigital transducer involved supple-

mented with a large unelectroded surface. In this way, the

mutual influence of two adjacent periods is reduced. Fur-

ther in our computational approach, all integrations over S

in the iteration scheme are replaced by a simple numerical

summation (trapezoidal integration rule).

In order to demonstrate the performance of the pre-

sented method, we apply it to a specific configuration (Fig.

3). It consists of an infinite periodic interdigital metal

pattern in a vacuum ZnO–Si02 –Si structure. The polari-

ties of the fingers are alternately + 1 V and – 1 V. All

electrode domains ( = W) and all unelectroded domains

are equally sized. The period ( = P) of the interdigital

transducer, being the distance between the left edges of two

adjacent positive electrodes, is taken 40 pm. Table 111 lists

the relative permittivities and the conductivities of the

media of the configuration in Fig. 3. In Table IV, we

present the values of the root-mean-square error

[ERRf”J/J~ dx]l/2 as a function of the number of itera-

tions. The remarkable convergence of the present iterative

method has to be noted.

In Fig. 4, we present the numerical results for the spatial

distribution of the potential and the surface charge p,=

(.JJ) - l[J,(x)l: at the electrode plane Of the configura-
tion of Fig. 3. The frequencies of operation are taken to be

u = 106 rad/s (curve a) and u = 101° rad/s (curves b and

c). The surface charge in the low-frequency situation is

larger than in the high-frequency one. Furthermore, the

surface charge as well as the potential at the electrode

plane are approximately real in the low-frequency case,
and become complex when the frequency is increased. The

isopotential plots of Fig. 5 also visualize the difference

between the high- and the low-frequency behavior. For

u =106 rad/s, it is observed that the isopotential lines do

not penetrate into the silicon bulk. Replacing the silicon

medium by a highly conductive plate, we have observed no

difference in the isopotential plots of the two configura-

tions for this low-frequency region. For o =1010 rad/s, the

isopotential lines penetrate into the silicon. The discontinu-

ities in the curves at the interfaces are due to continuity

constraints of the potential and the normal component of

the current density. In Fig. 6, the frequency behavior of the

TABLE III
Tm vALuss OF THF RSLATIVE PSRMITTIWTIES (c, = C/EO;

c. = 8.85410–12F/m) AND CONDUCTIVITIES OF THE MEDIA OF.
T& CONFIGURATION OF FIG. 3

medium E
z,r ‘Z, r ‘z ‘z

in S/m in S/m

Vacuum 1 1 0 0

Zno 8.32 8.83 0 0

Si02 3.78 3.78 0 0

Si 11.7 11.7 1.0 1.0

TABLE IV
TkE ROOT-NfBAN-SQUARE ERROR AS A FUNCTION OF THE NUMBER

OF ITERATIONS

Iteration The root mean square error

step ~ = 11)6 ~ .,0’0

1 13 % 12 %

2 0.074 % 0.15 %

3 0.021 % 0.10 %

4 0.0017 % 0.01 %

5 0.0004 % 0.005 %

The configuration of Fig: 3 has a discretization of 256 points within the

period P.

i

c w = 10IO,IMAGINARY PART

p, in 10’
Coulh 0’1

Fig. 4. The spatial distribution of the potential and surface charge at the

electrode plane of the configuration of Fig. 3.

configuration is further visualized by the capacitance and

the conductance of a finger pair as a function of the

frequency. It is observed that the conductance G ( = the

quotient of the real part of the current through one elec-

trode and the pertaining potential difference of the finger

pair) is practically zero for low frequencies, while the

capacitance C ( = the quotient of the real part of the

surface charge at one electrode and the pertaining potential

difference of the finger pair) has a constant value. At high
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Fig. 5. The potential distribution in the configuration of Fig. 3 for
u =106 and 61=lO1O.
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Fig. 6. The capacitance and conductance of a finger pair as function of
the frequency.

Fig. 7. The potential distribution in the configuration of Fig. 3, while

the metaf pattern consists of six electrodes only ( a = 106).

4.0-

z {n
pm I

2.0-

00

-20

-40

— IVI. O.7V
.. IVI=04V
-– IVI=O.IV

5 250 305 500
—xm,um

Fig. 8. The potentiaf distribution in the configuration of Fig. 3, while
tie thickne& of the Si02 layer is infinite (hs,o, + co) and the metal

pattern consists of six electrodes only.

frequencies, the capacitance has a smaller constant value,

and the conductance is not negligible anymore. In Fig. 7,

we present the isopotential lines of a finite interdigital

metal pattern of six electrodes in the vacuum ZnO–SiOz –Si

structure of Fig. 3. To simulate the infinite domain in

which the six electrodes have been situated, we take a

period (in the FFT calculations) of fifty times the width of

one electrode. Fig. 7 demonstrates that the influence of end

effects in this configuration are negligible. In Fig. 8, we

show an isopotential plot for the metal pattern of six

electrodes in the configuration of Fig. 3, while the thick-

ness of the Si02 layer is thought to be infinite (h Sio, ~ m).

Here, the end effects play a dominant role. Obviously, the

conductivity of the silicon substrate in Fig. 7 has reduced

the influence of end effects.

In order to discuss the influence of the discretization

upon our numerical results, we therefore compare our

numerical results to known analytical ones in a simple
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TABLE V
THE RELATIVE ERROR AND THE COMPUTATION TIM? (ON AN

AMDAHL V/7-B COMPUTER) RESULTING FROM THE

COMPUTATION OF THE CAPACITANCE OF A PERIODIC INTERDIGITAL
TranSdUCer IN VACUUM

Number of Relative error Computation time

points

32 3 % <1s

64 1.6 % <1s

128 0.7 % 1s

256 0.3 % 1s

512 0.1 % 4s

1024 0.02 % 7s

C in
F/m 1[

1
16”/

0.0 02 0.4 06 08 —
2 w/P

Fig. 9. The capacitance of a finger pair in the configuration of Fig. 3 as
a function of the electrode width (w), while the period P is constant.

configuration of an infinite periodic metal pattern in

vacuum. The capacitance is then given by [9]

c= 2EoK(k)/K((l - lc’)’/2) (56)

where K is the complete elliptic integral of the first kind

[15], and k = cos(l/277(1 – 2W’/P)). Table V presents the

relative error as a function of the number N of discretiza-

tion points within a period P, where the summed square

error of the discretized iteration scheme is negligible.

Finally, the capacitance pertaining to the configuration

of Fig. 3 as a function of W is presented in Fig. 9.

Additionally, we also present the capacitance if the thick-

ness of the Si02 layer is thought to be infinite.

VII. CONCLUSIONS

We have presented a computational method to investi-

gate the behavior of a SAW transducer. The method is

based upon a fast convergent iterative scheme. The minimi-

zation of the error made in the satisfaction of the boundary

condition at the electrodes has guaranteed the convergence

of the scheme. Using the FFT technique, the numerical

computations are straightforward. At this moment, we are

now able to compute the electric field of any realistic finger

structure in any realistic layered environment.

We have further shown that the influence of the layers is

necessary to take into account. A conducting layer can

influence the mutual coupling of the transducer fingers

dramatically.
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Computer Calculation of Large-Signal
GaAs FET Amplifier Characteristics

ANDRZEJ MATERKA AND TOMASZ KACPRZAK

Abstract — A simple and efficient method of GaAs FET amplifier anafy-

sis is presented. The FET is represented by its circuit-type nordinear

dynamic model taking into account the device’s main nonlinear effects

inclnding gate-drain voltage breakdown. An identification procedure for

extraction of the model parameters is described in detail and examples are

given. The cafcnlation of the arnplifkr response to a single-input harmonic

signal is performed using the piecewise harmonic balance technique. As

this teelnique is rather time-consuming in its origirraf form, the optimiza-

tion routine used to solve the network equations was replaced by the

Newton-Raphson algorithm. Characteristics calculated with the use of the

proposed method are compared with experimental data taken for a micro-

wave amplifier using a 2SK273 GaAs FET unit. Gad agreement at 9.5

GHz over wide ranges of bias voltage and input power levels are observed.

I. INTRODUCTION

T HE GaAs FET is receiving continuously growing at-

tention from circuit designers both in low-noise and

high-power applications. Particularly, the power FET is an

attractive device for use in microwave amplifiers and oscil-

lators with its efficiency and power performance compara-

ble or even superior to the other commercial solid-state or

TWT sources. On the other hand, the power FET has

received much less attention from researchers than its

low-noise counterpart and, still, there is a need for data on

device RF characterization at large-signal drive levels.

Manuscript receivedNovember 10, 1983; revised September17, 1984.
The authors are with the Technicaf University of Lodi, Institute of

Electronics, Gdanska Street 176, 90-924 Lodi, Poland.

Some efforts have been made to simulate the large-signal

GaAs MESFET performance based on the numerical solu-

tion of the two-dimensional nonlinear differential equa-

tions describing the electron transport in the channel. The

numerical results [1] are very helpful to understand device

operation, but long computational time makes this ap-

proach impractical in circuit analysis and design programs.

Recently, Madjar and Rcssenbaum [2], [3] and Shur and

Eastman [4] developed approximate analytical theories to

model the active region under the gate of the microwave

GaAs FET. Although one of these theories has been ap-

plied to the analysis of a practical microwave FET oscilla-

tor [3], both of them are of limited use in circuit design

practice because they utilize the FET physical parameters

which are scarcely available to the circuit designers.

Willing, Rauscher, and de Santis [5] characterized an actual

device with a quasi-static approach by measuring small-sig-

nal scattering parameters at a number of operating points

to formulate an equivalent circuit, some of whose elements

are bias-dependent. They use polynomial forms to ap-

proximate these dependence and a time-domain analysis

program to calculate the large-signal device characteristics.
The results obtained compare favorably with the experi-

mentally determined characteristics, but the complexity of

the equivalent circuit makes the identification technique of

the model parameters rather laborious. Later, Rauscher [6]
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